
MISP core development crash course
How I learned to stop worrying and love the PHP

Team CIRCL

MISP Training @ Prague
20180917

1 of 17



Some things to know in advance...

• MISP is based on PHP 5.6+

• Using the MVC framework CakePHP 2.x

• What we’ll look at now will be a quick glance at the structuring /
layout of the code

2 of 17



MVC frameworks in general

• separation of business logic and views, interconnected by controllers

• main advantage is clear separation of the various components

• lean controllers, fat models (kinda...)

• domain based code reuse

• No interaction between Model and Views, ever

3 of 17



Structure of MISP Core app directories

• Config: general configuration files

• Console: command line tools

• Controller: Code dealing with requests/responses, generating data
for views based on interactions with the models

• Lib: Generic reusable code / libraries

• Model: Business logic, data gathering and modification

• Plugin: Alternative location for plugin specific codes, ordered into
controller, model, view files

• View: UI views, populated by the controller

4 of 17



Controllers - scope

• Each public function in a controller is exposed as an API action

• request routing (admin routing)

• multi-use functions (POST/GET)

• request/response objects

• contains the action code, telling the application what data
fetching/modifying calls to make, preparing the resulting data for
the resulting view

• grouped into controller files based on model actions

• Accessed via UI, API, AJAX calls directly by users

• For code reuse: behaviours

• Each controller bound to a model

5 of 17



Controllers - functionalities of controllers

• pagination functionality

• logging functionality

• Controllers actions can access functionality / variables of Models

• Controllers cannot access code of other controller actions (kind
of...)

• Access to the authenticated user’s data

• beforeFilter(), afterFilter() methods

• Inherited code in AppController

6 of 17



Controllers - components

• Components = reusable code for Controllers
◦ Authentication components
◦ RestResponse component
◦ ACL component
◦ Cidr component
◦ IOCImport component (should be moved)

7 of 17



Controllers - additional functionalities

• code handling API requests

• auth/session management

• ACL management

• API management

• Security component

• important: quertString/PyMISP versions, MISP version handler

• future improvements to the export mechanisms

8 of 17



Models - scope

• Controls anything that has to do with:
◦ finding subsets of data
◦ altering existing data
◦ inherited model: AppModel
◦ reusable code for models: Behaviours
◦ regex, trim

9 of 17



Models - hooking system

• Versatile hooking system
◦ manipulate the data at certain stages of execution
◦ code can be located in 3 places: Model hook, AppModel hook,

behaviour

10 of 17



Model - hooking pipeline (add/edit)

• Hooks / model pipeline for data creation / edits
◦ beforeValidate() (lowercase all hashes)
◦ validate() (check hash format)
◦ afterValidate() (we never use it
◦ could be interesting if we ever validated without saving)
◦ beforeSave() (purge existing correlations for an attribute)
◦ afterSave() (create new correlations for an attribute / zmq)

11 of 17



Models - hooking pipeline (delete/read)

• Hooks for deletions
◦ beforeDelete() (purge correlations for an attribute)
◦ afterDelete() (zmq)

• Hooks for retrieving data
◦ beforeFind() (modify the find parameters before execution, we don’t

use it)
◦ afterFind() (json decode json fields)

12 of 17



Models - misc

• code to handle version upgrades contained in AppModel

• generic cleanup/data migration tools

• centralised redis/pubsub handlers

• (Show example of adding an attribute with trace)

13 of 17



Views - scope and structure

• templates for views

• layouts

• reusable template code: elements
◦ attribute list, rows (if reused)

• reusable code: helpers
◦ commandhelper (for discussion boards), highlighter for searches, tag

colour helper

• views per controller

14 of 17



Views - Types of views and helpers

• ajax views vs normal views

• data views vs normal views vs serialisation in the controller

• sanitisation h()

• creating forms
◦ sanitisation
◦ CSRF

15 of 17



Distribution

• algorithm for checking if a user has access to an attribute

• creator vs owner organisation

• distribution levels and inheritance (events -¿ objects -¿ attributes)

• shorthand inherit level

• sharing groups (org list, instance list)

• correlation distribution

• algorithms for safe data fetching (fetchEvents(),
fetchAttributes(),...)

16 of 17



Testing your code

• funtional testing

• impact scope
◦ view code changes: only impacts request type based views
◦ controller code changes: Should only affect given action
◦ model code changes: can have impact on entire application
◦ lib changes: can have affect on the entire application

• Don’t forget: queryACL, change querystring

17 of 17


